COVID-19 VACCINES IN CANADA

Dr. Marina Salvadori and Dr. April Killikelly
Declaration of Interests - Dr. Marina Salvadori

- Nothing to declare
Declaration of Interests- Dr. April Killikelly

- Nothing to declare
OBJECTIVES

• To describe the platform technologies used by candidate vaccines against SARS-CoV-2 / COVID-19.

• To discuss mRNA vaccines in development by Pfizer/BioNTech and Moderna against SARS-CoV-2 / COVID-19.
Presentation Recorded on December 12th 2020

Every attempt has been made to present the most current information however information about COVID-19 vaccines is rapidly evolving and the information presented here may be out of date.

Please check the Public Health Agency of Canada website for the most up to date information.

Vaccine Platforms

• Canada has made agreements in principle with 7 vaccine developers to supply Canadians with doses of vaccine if their vaccine candidate is assessed to be safe and efficacious by Health Canada

• The vaccines in development for which Canada may have first access use three different technologies:
 – Protein subunit (including Virus Like Particles (VLPs))
 – Messenger RNA (mRNA)
 – Viral vectors
SARS-COV-2 VACCINE ANTIGENS: THE SPIKE PROTEIN
SARS-CoV-2 the virus that causes COVID-19

- Spike is a viral protein antigen on the surface of SARS-CoV-2

(L) Image: Transmission electron microscope image shows SARS-CoV-2, the virus that causes COVID-19, isolated from a patient in the U.S. Source: National Institutes of Health
(R) Image: de Andrade Santos et al, Review in Frontiers in Microbiology Aug 2020
Spike mediates SARS-CoV-2 Infection

- Spike mediates contact between the virus and the host cell to cause infection
- One way to prevent infection is to block the interaction between spike and ACE-2 via the production of anti-spike antibodies

Image: Berkley Lights
How to elicit anti-spike antibodies:

- Vaccination with spike protein elicits a primary immune response that forms immunological memory.

- Upon natural infection, immunological memory is called upon to mount a protective immune response.
How to deliver SARS-CoV-2 spike protein: From Gene to Protein

Proteins are made through a 2 step process:

Step 1: Transcription
- Genes are transcribed into mRNA

Step 2: Translation
- mRNA molecules are translated into proteins

Image Adapted from Qin et al. *The Current Status and Challenges in Computational Analysis of Genomic Big Data*
How to deliver SARS-CoV-2 spike protein: From Gene to Protein

Different steps to create a protein happen in different locations within a cell:

- **Transcription (DNA->mRNA)** happens inside the **nucleus** of the cell
- **Translation (mRNA->protein)** happens inside the **cytosol** of the cell

Material does pass into the cytosol or the nucleus of the cell. Vaccine developers have developed **lipid nanoparticle** and **viral vector technology** to allow DNA and mRNA to pass through membranes.
VACCINE PLATFORMS

Protein, mRNA and Viral Vector
Protein Subunit Vaccines:

- Deliver vaccine antigens as proteins which directly elicit an immune response.
- An established technology
- Elicit a strong antibody response
- Commonly use adjuvants
- Generally slower manufacturing timelines

COVID-19 Protein Subunit vaccines:
- Novavax
- Sanofi
Virus-Like Particle Vaccines (VLP)

VLP Vaccines
- Deliver vaccine antigens as proteins which directly elicit an immune response.
- An established technology
- Elicit a strong antibody response
- Commonly use adjuvants
- Generally slower manufacturing timelines

COVID-19 VLP vaccines: Medicago

Image Micro and Nanotechnology in Vaccine Development
Messenger RNA (mRNA) Vaccines:

- Lipid nanoparticles are used to deliver mRNA directly into cells
- mRNA coding for spike protein are then translated
- New technology
- Elicitation of antibodies and T-cells
- Fast manufacturing timeline

mRNA vaccines:
Modern
Pfizer/BioNTech

Image: Opportunities and Challenges in the Delivery of mRNA-Based Vaccines
COVID-19 Viral Vector Vaccines

Viral Vector Vaccines:
- Modified adenovirus used as a vector to deliver spike genes (DNA) into the cell
- Elicitation of antibodies and T-cells
- Potential for interference from pre-existing adenoviral immunity

COVID-19 VLP vaccines:
- Janssen and Johnson & Johnson
- AstraZeneca/University of Oxford
Assessing Vaccine Efficacy

- **Vaccine Efficacy:** How well a vaccine protects vaccinated vs unvaccinated people from disease in a clinical trial
- **Vaccine Effectiveness:** How well a vaccine protects vaccinated vs unvaccinated people from disease in the real world
- Randomized controlled trials (RCTs) are the best method to assess vaccine efficacy

![Diagram](image)

Incidence of Disease in Placebo Group: (7/8)

Incidence of Disease in Vaccine Group: (1/8)

Vaccine Efficacy:

The vaccinated group would experience 86% fewer disease cases than they would have if they had not been vaccinated.

Image adapted from: [Test, Learn, Adapt: Developing Public Policy with Randomised Controlled Trials](#)
COVID-19 Vaccine Development Landscape:

Confirmed Supply Agreement with Canada

<table>
<thead>
<tr>
<th>Platform Technology</th>
<th>IO Submission</th>
<th>Preclinical</th>
<th>Phase I</th>
<th>Phase II</th>
<th>Phase III</th>
<th>Licensure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sanofi/GSK</td>
<td>Protein</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Novavax</td>
<td>Subunit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VBI</td>
<td>Virus Like</td>
<td>YES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medicago</td>
<td>Particle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pasteur/Merck</td>
<td>Viral Vector</td>
<td></td>
<td></td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Janssen/J&J</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>YES</td>
</tr>
<tr>
<td>CanSino</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>AZ/Univ of Oxford</td>
<td></td>
<td></td>
<td></td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Moderna</td>
<td></td>
<td></td>
<td></td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>BioNTech/Pfizer</td>
<td>mRNA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>YES</td>
</tr>
<tr>
<td>CureVac</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>ICL/Morning</td>
<td></td>
<td></td>
<td></td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>PNI</td>
<td>DNA</td>
<td></td>
<td></td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Inovio</td>
<td></td>
<td></td>
<td></td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Valneva/Dynavax</td>
<td>Inactivated</td>
<td></td>
<td></td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
</tbody>
</table>

IO- Interim Order
mRNA VACCINES EXPECTED IN EARLY 2021

Pfizer and Moderna
mRNA Vaccines: Moderna and Pfizer/BioNTech

- Vaccine antigen is mRNA coding for a gene for SARS-CoV-2 spike protein
- mRNA is very unstable

mRNA Lipid Nanoparticle

- mRNA LNPs are made of two parts-
 - mRNA
 - Lipids
- The lipids allow the mRNA to enter into the cell
- Like oil and water, lipids don’t mix well with water so the mRNA lipid nanoparticle vaccines have special frozen and ultrafrozen storage and handling requirements (i.e., no shaking).

Image adapted from: [Solid Lipid Nanoparticles: A Potential Approach for Dermal Drug Delivery](#)
mRNA Vaccines: Moderna and Pfizer/BioNTech

<table>
<thead>
<tr>
<th></th>
<th>Moderna (mRNA-1273)</th>
<th>Pfizer/BioNTech (BNT162b2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vaccine components:</td>
<td>mRNA formulated into a lipid nanoparticle (LNP)</td>
<td>mRNA formulated into a lipid nanoparticle (LNP)</td>
</tr>
<tr>
<td>Vial Size:</td>
<td>10 doses multi-dose</td>
<td>5 doses multi-dose</td>
</tr>
<tr>
<td>Reconstitution:</td>
<td>None needed.</td>
<td>Needs to be reconstituted with normal saline, not bacteriostatic 0.9% sodium chloride injection or any other diluent.</td>
</tr>
<tr>
<td>Administration and Dosing:</td>
<td>2 x 0.5 mL doses given IM 28 days apart</td>
<td>2 x 0.3 mL doses given IM 21 day apart</td>
</tr>
<tr>
<td>Handling:</td>
<td>Swirl the vial gently between doses, do not shake</td>
<td>Invert gently 10 times to mix. Do not shake.</td>
</tr>
<tr>
<td>Freezer Storage:</td>
<td>-20 C (freezer)</td>
<td>-75 C (ultrafreezer)</td>
</tr>
<tr>
<td>Transport:</td>
<td>Frozen only: -20 C</td>
<td>Ultrafrozen only: -75 C</td>
</tr>
<tr>
<td>Fridge Storage:</td>
<td>30 days at 2-8 C</td>
<td>5 days at 2-8 C</td>
</tr>
</tbody>
</table>

See Module 3 for more details
mRNA Vaccines: Moderna and Pfizer

Updated as of Dec 11 2020

<table>
<thead>
<tr>
<th>Population of Phase 3 Trials:</th>
<th>Moderna</th>
<th>Pfizer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age: 18y+</td>
<td>Size: >30 000 in US, including:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• >7 000 65y+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• >8 000 high risk*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• >11 000 people of colour*</td>
<td></td>
</tr>
<tr>
<td>Age: 12-15y, 16-55y, 56+y</td>
<td>Size: 43 000 Globally</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 18 000 56-85y</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 12 000 racially and ethnically diverse backgrounds</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Efficacy Data</th>
<th>Moderna</th>
<th>Pfizer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Analysis at 196 cases (185 placebo, 11 vaccine)</td>
<td>Final Analysis at 170 cases (162 placebo, 8 vaccine)</td>
<td></td>
</tr>
<tr>
<td>Data starting from 2 weeks after Dose 2</td>
<td>Data starting from 1 week after Dose 2</td>
<td></td>
</tr>
<tr>
<td>Primary endpoint: 94.1% vaccine efficacy.</td>
<td>Primary endpoint: 95% vaccine efficacy.</td>
<td></td>
</tr>
<tr>
<td>Efficacy in older adults not reported</td>
<td>Efficacy in 65y+: >94%</td>
<td></td>
</tr>
<tr>
<td>Secondary endpoint: 30 severe cases in study, all in placebo group. One COVID-19 death in study, in the placebo group.</td>
<td>Secondary endpoint: 10 severe cases in study, 9 in placebo group.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Safety Data</th>
<th>Moderna</th>
<th>Pfizer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median follow-up, ~2 months</td>
<td>Median follow-up, ~2 months (for 38,000 trial participants). No serious safety concerns observed.</td>
<td></td>
</tr>
<tr>
<td>No serious safety concerns observed</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*High risk including diabetes, severe obesity and cardiac disease; People of Colour including Hispanic, LatinX, Black or African American

[Polack et al]
Key Messages for COVID-19 Vaccine Candidates:

• SARS-CoV-2 spike protein antigens have been demonstrated to induce protective immune responses against COVID-19 in randomized controlled trials

• Canada has negotiated agreements in principle to supply vaccine to Canadians with 7 companies using 3 methods of delivering spike protein:
 – Protein subunit (including virus-like particle)
 – mRNA
 – Viral vector

• mRNA vaccine technology will be the first to market in Canada.
 – These vaccines are given as two doses, spaced 21 or 28 days apart
 – Reports have indicated >90% efficacy in preventing COVID-19 disease weeks after second dose (not all data publically available)
 – mRNA vaccines require lipid nanoparticle formulation, which means they have special storage temperatures and handling requirements.
Additional Resources

Canadian Immunization Guide

National Advisory Committee on Immunization Statements

Public Health Agency of Canada